Line | Branch | Exec | Source |
---|---|---|---|
1 | // SPDX-FileCopyrightText: 2023 - 2024 Arm Limited and/or its affiliates <open-source-office@arm.com> | ||
2 | // | ||
3 | // SPDX-License-Identifier: Apache-2.0 | ||
4 | |||
5 | #include <algorithm> | ||
6 | #include <limits> | ||
7 | |||
8 | #include "kleidicv/kleidicv.h" | ||
9 | #include "kleidicv/morphology/workspace.h" | ||
10 | #include "kleidicv/neon.h" | ||
11 | #include "kleidicv/types.h" | ||
12 | |||
13 | namespace kleidicv::neon { | ||
14 | |||
15 | template <typename ScalarType, typename O> | ||
16 | class VerticalOp final { | ||
17 | public: | ||
18 | using VecTraits = neon::VecTraits<ScalarType>; | ||
19 | |||
20 | 380 | VerticalOp(Rectangle rect, Rectangle kernel) : rect_(rect), kernel_(kernel) {} | |
21 | |||
22 | 380 | void process_rows(IndirectRows<ScalarType> src_rows, | |
23 | Rows<ScalarType> dst_rows) { | ||
24 |
4/4✓ Branch 0 taken 16 times.
✓ Branch 1 taken 190 times.
✓ Branch 2 taken 16 times.
✓ Branch 3 taken 158 times.
|
380 | if (KLEIDICV_UNLIKELY(kernel_.height()) == 1) { |
25 | 32 | CopyRows<ScalarType>::copy_rows(rect_, src_rows, dst_rows); | |
26 | 32 | return; | |
27 | } | ||
28 | |||
29 | // Iterate across the rows from top to bottom. This implementation can | ||
30 | // handle two rows at once. | ||
31 |
4/4✓ Branch 0 taken 466 times.
✓ Branch 1 taken 190 times.
✓ Branch 2 taken 357 times.
✓ Branch 3 taken 158 times.
|
1171 | for (size_t height = 0; height < rect_.height(); height += 2) { |
32 | // Iterate across the columns from left to right. | ||
33 | 1646 | LoopUnroll2<TryToAvoidTailLoop> loop{rect_.width() * src_rows.channels(), | |
34 | 823 | VecTraits::num_lanes()}; | |
35 | // clang-format off | ||
36 | loop | ||
37 | 847 | .unroll_four_times([&](size_t index) { | |
38 | 24 | vector_path_4x(src_rows, dst_rows, index, height); | |
39 | 24 | }) | |
40 | 855 | .unroll_twice([&](size_t index) { | |
41 | 32 | vector_path_2x(src_rows, dst_rows, index, height); | |
42 | 32 | }) | |
43 | 1249 | .unroll_once([&](size_t index) { | |
44 | 426 | vector_path(src_rows, dst_rows, index, height); | |
45 | 426 | }) | |
46 | 3427 | .tail([&](size_t index) { | |
47 | 2604 | scalar_path(src_rows, dst_rows, index, height); | |
48 | 2604 | }); | |
49 | // clang-format on | ||
50 | 823 | src_rows += 2; | |
51 | 823 | dst_rows += 2; | |
52 | 823 | } | |
53 | 380 | } | |
54 | |||
55 | private: | ||
56 | 24 | void vector_path_4x(IndirectRows<ScalarType> src_rows, | |
57 | Rows<ScalarType> dst_rows, const size_t index, | ||
58 | const size_t height) { | ||
59 | 24 | const ScalarType *src_row = &src_rows[index]; | |
60 | 24 | auto first_row0 = vld1q(&src_row[0 * VecTraits::num_lanes()]); | |
61 | 24 | auto first_row1 = vld1q(&src_row[1 * VecTraits::num_lanes()]); | |
62 | 24 | auto first_row2 = vld1q(&src_row[2 * VecTraits::num_lanes()]); | |
63 | 24 | auto first_row3 = vld1q(&src_row[3 * VecTraits::num_lanes()]); | |
64 | 24 | ++src_rows; | |
65 | |||
66 | 24 | src_row = &src_rows[index]; | |
67 | 24 | auto acc0 = vld1q(&src_row[0 * VecTraits::num_lanes()]); | |
68 | 24 | auto acc1 = vld1q(&src_row[1 * VecTraits::num_lanes()]); | |
69 | 24 | auto acc2 = vld1q(&src_row[2 * VecTraits::num_lanes()]); | |
70 | 24 | auto acc3 = vld1q(&src_row[3 * VecTraits::num_lanes()]); | |
71 | 24 | ++src_rows; | |
72 | |||
73 | 24 | LoopUnroll loop{kernel_.height() - 2, 2}; | |
74 | |||
75 | 36 | loop.unroll_once([&](size_t step) { | |
76 | 12 | const ScalarType *src_row0 = &src_rows.at(0)[index]; | |
77 | 12 | const ScalarType *src_row1 = &src_rows.at(1)[index]; | |
78 | 12 | auto row00 = vld1q(&src_row0[0 * VecTraits::num_lanes()]); | |
79 | 12 | auto row01 = vld1q(&src_row0[1 * VecTraits::num_lanes()]); | |
80 | 12 | auto row02 = vld1q(&src_row0[2 * VecTraits::num_lanes()]); | |
81 | 12 | auto row03 = vld1q(&src_row0[3 * VecTraits::num_lanes()]); | |
82 | 12 | auto row10 = vld1q(&src_row1[0 * VecTraits::num_lanes()]); | |
83 | 12 | auto row11 = vld1q(&src_row1[1 * VecTraits::num_lanes()]); | |
84 | 12 | auto row12 = vld1q(&src_row1[2 * VecTraits::num_lanes()]); | |
85 | 12 | auto row13 = vld1q(&src_row1[3 * VecTraits::num_lanes()]); | |
86 | 12 | acc0 = O::operation(acc0, O::operation(row00, row10)); | |
87 | 12 | acc1 = O::operation(acc1, O::operation(row01, row11)); | |
88 | 12 | acc2 = O::operation(acc2, O::operation(row02, row12)); | |
89 | 12 | acc3 = O::operation(acc3, O::operation(row03, row13)); | |
90 | 12 | src_rows += step; | |
91 | 12 | }); | |
92 | |||
93 | 44 | loop.tail([&](size_t /* index */) { | |
94 | 20 | const ScalarType *src_row = &src_rows[index]; | |
95 | 20 | auto row0 = vld1q(&src_row[0 * VecTraits::num_lanes()]); | |
96 | 20 | auto row1 = vld1q(&src_row[1 * VecTraits::num_lanes()]); | |
97 | 20 | auto row2 = vld1q(&src_row[2 * VecTraits::num_lanes()]); | |
98 | 20 | auto row3 = vld1q(&src_row[3 * VecTraits::num_lanes()]); | |
99 | 20 | acc0 = O::operation(acc0, row0); | |
100 | 20 | acc1 = O::operation(acc1, row1); | |
101 | 20 | acc2 = O::operation(acc2, row2); | |
102 | 20 | acc3 = O::operation(acc3, row3); | |
103 | 20 | ++src_rows; | |
104 | 20 | }); | |
105 | |||
106 | // Save partial results which do not contain the first row. | ||
107 | 24 | auto partial_acc0 = acc0; | |
108 | 24 | auto partial_acc1 = acc1; | |
109 | 24 | auto partial_acc2 = acc2; | |
110 | 24 | auto partial_acc3 = acc3; | |
111 | |||
112 | // Take the first row into account. | ||
113 | 24 | acc0 = O::operation(acc0, first_row0); | |
114 | 24 | acc1 = O::operation(acc1, first_row1); | |
115 | 24 | acc2 = O::operation(acc2, first_row2); | |
116 | 24 | acc3 = O::operation(acc3, first_row3); | |
117 | |||
118 | // Store the results. | ||
119 | 24 | ScalarType *dst_row = &dst_rows[index]; | |
120 | 24 | vst1q(&dst_row[0 * VecTraits::num_lanes()], acc0); | |
121 | 24 | vst1q(&dst_row[1 * VecTraits::num_lanes()], acc1); | |
122 | 24 | vst1q(&dst_row[2 * VecTraits::num_lanes()], acc2); | |
123 | 24 | vst1q(&dst_row[3 * VecTraits::num_lanes()], acc3); | |
124 | |||
125 | // Try to process one more row, because it is relatively cheap to do so. | ||
126 |
4/4✓ Branch 0 taken 4 times.
✓ Branch 1 taken 8 times.
✓ Branch 2 taken 4 times.
✓ Branch 3 taken 8 times.
|
24 | if (KLEIDICV_UNLIKELY((height + 1) >= rect_.height())) { |
127 | 8 | return; | |
128 | } | ||
129 | |||
130 | 16 | ++dst_rows; | |
131 | |||
132 | 16 | src_row = &src_rows[index]; | |
133 | 16 | auto next_row0 = vld1q(&src_row[0 * VecTraits::num_lanes()]); | |
134 | 16 | auto next_row1 = vld1q(&src_row[1 * VecTraits::num_lanes()]); | |
135 | 16 | auto next_row2 = vld1q(&src_row[2 * VecTraits::num_lanes()]); | |
136 | 16 | auto next_row3 = vld1q(&src_row[3 * VecTraits::num_lanes()]); | |
137 | |||
138 | 16 | acc0 = O::operation(partial_acc0, next_row0); | |
139 | 16 | acc1 = O::operation(partial_acc1, next_row1); | |
140 | 16 | acc2 = O::operation(partial_acc2, next_row2); | |
141 | 16 | acc3 = O::operation(partial_acc3, next_row3); | |
142 | |||
143 | 16 | dst_row = &dst_rows[index]; | |
144 | 16 | vst1q(&dst_row[0 * VecTraits::num_lanes()], acc0); | |
145 | 16 | vst1q(&dst_row[1 * VecTraits::num_lanes()], acc1); | |
146 | 16 | vst1q(&dst_row[2 * VecTraits::num_lanes()], acc2); | |
147 | 16 | vst1q(&dst_row[3 * VecTraits::num_lanes()], acc3); | |
148 | 24 | } | |
149 | |||
150 | 32 | void vector_path_2x(IndirectRows<ScalarType> src_rows, | |
151 | Rows<ScalarType> dst_rows, const size_t index, | ||
152 | const size_t height) { | ||
153 | 32 | const ScalarType *src_row = &src_rows[index]; | |
154 | 32 | auto first_row0 = vld1q(&src_row[0]); | |
155 | 32 | auto first_row1 = vld1q(&src_row[VecTraits::num_lanes()]); | |
156 | 32 | ++src_rows; | |
157 | |||
158 | 32 | src_row = &src_rows[index]; | |
159 | 32 | auto acc0 = vld1q(&src_row[0]); | |
160 | 32 | auto acc1 = vld1q(&src_row[VecTraits::num_lanes()]); | |
161 | 32 | ++src_rows; | |
162 | |||
163 | 32 | LoopUnroll loop{kernel_.height() - 2, 2}; | |
164 | |||
165 | 48 | loop.unroll_once([&](size_t step) { | |
166 | 16 | const ScalarType *src_row0 = &src_rows.at(0)[index]; | |
167 | 16 | const ScalarType *src_row1 = &src_rows.at(1)[index]; | |
168 | 16 | auto row00 = vld1q(&src_row0[0]); | |
169 | 16 | auto row01 = vld1q(&src_row0[VecTraits::num_lanes()]); | |
170 | 16 | auto row10 = vld1q(&src_row1[0]); | |
171 | 16 | auto row11 = vld1q(&src_row1[VecTraits::num_lanes()]); | |
172 | 16 | acc0 = O::operation(acc0, O::operation(row00, row10)); | |
173 | 16 | acc1 = O::operation(acc1, O::operation(row01, row11)); | |
174 | 16 | src_rows += step; | |
175 | 16 | }); | |
176 | |||
177 | 52 | loop.tail([&](size_t /* index */) { | |
178 | 20 | const ScalarType *src_row = &src_rows[index]; | |
179 | 20 | auto row0 = vld1q(&src_row[0]); | |
180 | 20 | auto row1 = vld1q(&src_row[VecTraits::num_lanes()]); | |
181 | 20 | acc0 = O::operation(acc0, row0); | |
182 | 20 | acc1 = O::operation(acc1, row1); | |
183 | 20 | ++src_rows; | |
184 | 20 | }); | |
185 | |||
186 | // Save partial results which do not contain the first row. | ||
187 | 32 | auto partial_acc0 = acc0; | |
188 | 32 | auto partial_acc1 = acc1; | |
189 | |||
190 | // Take the first row into account. | ||
191 | 32 | acc0 = O::operation(acc0, first_row0); | |
192 | 32 | acc1 = O::operation(acc1, first_row1); | |
193 | |||
194 | // Store the results. | ||
195 | 32 | ScalarType *dst_row = &dst_rows[index]; | |
196 | 32 | vst1q(&dst_row[0], acc0); | |
197 | 32 | vst1q(&dst_row[VecTraits::num_lanes()], acc1); | |
198 | |||
199 | // Try to process one more row, because it is relatively cheap to do so. | ||
200 |
4/4✓ Branch 0 taken 2 times.
✓ Branch 1 taken 12 times.
✓ Branch 2 taken 4 times.
✓ Branch 3 taken 14 times.
|
32 | if (KLEIDICV_UNLIKELY((height + 1) >= rect_.height())) { |
201 | 6 | return; | |
202 | } | ||
203 | |||
204 | 26 | ++dst_rows; | |
205 | |||
206 | 26 | src_row = &src_rows[index]; | |
207 | 26 | auto next_row0 = vld1q(&src_row[0]); | |
208 | 26 | auto next_row1 = vld1q(&src_row[VecTraits::num_lanes()]); | |
209 | |||
210 | 26 | acc0 = O::operation(partial_acc0, next_row0); | |
211 | 26 | acc1 = O::operation(partial_acc1, next_row1); | |
212 | |||
213 | 26 | dst_row = &dst_rows[index]; | |
214 | 26 | vst1q(&dst_row[0], acc0); | |
215 | 26 | vst1q(&dst_row[VecTraits::num_lanes()], acc1); | |
216 | 32 | } | |
217 | |||
218 | 426 | void vector_path(IndirectRows<ScalarType> src_rows, Rows<ScalarType> dst_rows, | |
219 | const size_t index, const size_t height) { | ||
220 | 426 | auto first_row = vld1q(&src_rows[index]); | |
221 | 426 | ++src_rows; | |
222 | |||
223 | 426 | auto acc = vld1q(&src_rows[index]); | |
224 | 426 | ++src_rows; | |
225 | |||
226 | 426 | LoopUnroll loop{kernel_.height() - 2, 2}; | |
227 | |||
228 | 902 | loop.unroll_once([&](size_t step) { | |
229 | 476 | auto row0 = vld1q(&src_rows.at(0)[index]); | |
230 | 476 | auto row1 = vld1q(&src_rows.at(1)[index]); | |
231 | 476 | acc = O::operation(acc, O::operation(row0, row1)); | |
232 | 476 | src_rows += step; | |
233 | 476 | }); | |
234 | |||
235 | 714 | loop.tail([&](size_t /* index */) { | |
236 | 288 | auto row = vld1q(&src_rows[index]); | |
237 | 288 | acc = O::operation(acc, row); | |
238 | 288 | ++src_rows; | |
239 | 288 | }); | |
240 | |||
241 | // Save partial result which does not contain the first row. | ||
242 | 426 | auto partial_acc = acc; | |
243 | |||
244 | // Take the first row into account. | ||
245 | 426 | acc = O::operation(acc, first_row); | |
246 | |||
247 | // Store the results. | ||
248 | 426 | vst1q(&dst_rows[index], acc); | |
249 | |||
250 | // Try to process one more row, because it is relatively cheap to do so. | ||
251 |
4/4✓ Branch 0 taken 36 times.
✓ Branch 1 taken 212 times.
✓ Branch 2 taken 42 times.
✓ Branch 3 taken 136 times.
|
426 | if (KLEIDICV_UNLIKELY((height + 1) >= rect_.height())) { |
252 | 78 | return; | |
253 | } | ||
254 | |||
255 | 348 | ++dst_rows; | |
256 | |||
257 | 348 | auto next_row = vld1q(&src_rows[index]); | |
258 | 348 | acc = O::operation(partial_acc, next_row); | |
259 | 348 | vst1q(&dst_rows[index], acc); | |
260 | 426 | } | |
261 | |||
262 | 2604 | void scalar_path(IndirectRows<ScalarType> src_rows, Rows<ScalarType> dst_rows, | |
263 | const size_t index, const size_t height) { | ||
264 | 2604 | disable_loop_vectorization(); | |
265 | |||
266 | 2604 | ScalarType first_row = src_rows[index]; | |
267 | 2604 | ++src_rows; | |
268 | |||
269 | 2604 | ScalarType acc = src_rows[index]; | |
270 | 2604 | ++src_rows; | |
271 | |||
272 | 2604 | LoopUnroll loop{kernel_.height() - 2, 2}; | |
273 | |||
274 | 5029 | loop.unroll_once([&](size_t step) { | |
275 | 2425 | auto row0 = src_rows.at(0)[index]; | |
276 | 2425 | auto row1 = src_rows.at(1)[index]; | |
277 | 2425 | acc = O::operation(acc, O::operation(row0, row1)); | |
278 | 2425 | src_rows += step; | |
279 | 2425 | }); | |
280 | |||
281 | 4413 | loop.tail([&](size_t /* index */) { | |
282 | 1809 | auto row = src_rows[index]; | |
283 | 1809 | acc = O::operation(acc, row); | |
284 | 1809 | ++src_rows; | |
285 | 1809 | }); | |
286 | |||
287 | // Save partial result which does not contain the first row. | ||
288 | 2604 | auto partial_acc = acc; | |
289 | |||
290 | // Take the first row into account. | ||
291 | 2604 | acc = O::operation(acc, first_row); | |
292 | |||
293 | // Store the results. | ||
294 | 2604 | dst_rows[index] = acc; | |
295 | |||
296 | // Try to process one more row, because it is relatively cheap to do so. | ||
297 |
4/4✓ Branch 0 taken 159 times.
✓ Branch 1 taken 1220 times.
✓ Branch 2 taken 205 times.
✓ Branch 3 taken 1020 times.
|
2604 | if (KLEIDICV_UNLIKELY((height + 1) >= rect_.height())) { |
298 | 364 | return; | |
299 | } | ||
300 | |||
301 | 2240 | ++dst_rows; | |
302 | |||
303 | 2240 | auto next_row = src_rows[index]; | |
304 | 2240 | acc = O::operation(partial_acc, next_row); | |
305 | 2240 | dst_rows[index] = acc; | |
306 | 2604 | } | |
307 | |||
308 | Rectangle rect_; | ||
309 | Rectangle kernel_; | ||
310 | }; // end of class VerticalOp<ScalarType, O> | ||
311 | |||
312 | template <typename ScalarType, typename O> | ||
313 | class HorizontalOp final { | ||
314 | public: | ||
315 | using VecTraits = neon::VecTraits<ScalarType>; | ||
316 | |||
317 | 2626 | HorizontalOp(Rectangle rect, Rectangle kernel) | |
318 | 2626 | : rect_(rect), kernel_(kernel) {} | |
319 | |||
320 | 2626 | void process_rows(Rows<const ScalarType> src_rows, | |
321 | Rows<ScalarType> dst_rows) { | ||
322 | // Iterate across the rows from top to bottom. | ||
323 |
4/4✓ Branch 0 taken 1531 times.
✓ Branch 1 taken 1531 times.
✓ Branch 2 taken 1095 times.
✓ Branch 3 taken 1095 times.
|
5252 | for (size_t height = 0; height < rect_.height(); ++height) { |
324 | // Iterate across the columns from left to right. | ||
325 | 5252 | LoopUnroll2<TryToAvoidTailLoop> loop{rect_.width() * src_rows.channels(), | |
326 | 2626 | VecTraits::num_lanes()}; | |
327 | // clang-format off | ||
328 | loop | ||
329 | 2694 | .unroll_four_times([&](size_t index) { | |
330 | 68 | vector_path_4x(src_rows, dst_rows, index); | |
331 | 68 | }) | |
332 | 2718 | .unroll_twice([&](size_t index) { | |
333 | 92 | vector_path_2x(src_rows, dst_rows, index); | |
334 | 92 | }) | |
335 | 4138 | .unroll_once([&](size_t index) { | |
336 | 1512 | vector_path(src_rows, dst_rows, index); | |
337 | 1512 | }) | |
338 | 10927 | .tail([&](size_t index) { | |
339 | 8301 | scalar_path(src_rows, dst_rows, index); | |
340 | 8301 | }); | |
341 | // clang-format on | ||
342 | 2626 | ++src_rows; | |
343 | 2626 | ++dst_rows; | |
344 | 2626 | } | |
345 | 2626 | } | |
346 | |||
347 | private: | ||
348 | 68 | void vector_path_4x(Rows<const ScalarType> src_rows, | |
349 | Rows<ScalarType> dst_rows, const size_t index) { | ||
350 | 68 | const auto *src_row = &src_rows[index]; | |
351 | 68 | auto acc0 = vld1q(&src_row[0 * VecTraits::num_lanes()]); | |
352 | 68 | auto acc1 = vld1q(&src_row[1 * VecTraits::num_lanes()]); | |
353 | 68 | auto acc2 = vld1q(&src_row[2 * VecTraits::num_lanes()]); | |
354 | 68 | auto acc3 = vld1q(&src_row[3 * VecTraits::num_lanes()]); | |
355 | |||
356 |
4/4✓ Branch 0 taken 34 times.
✓ Branch 1 taken 92 times.
✓ Branch 2 taken 34 times.
✓ Branch 3 taken 92 times.
|
252 | for (size_t width = 1; width < kernel_.width(); ++width) { |
357 | 184 | src_row = &src_rows[index + width * src_rows.channels()]; | |
358 | 184 | auto row0 = vld1q(&src_row[0 * VecTraits::num_lanes()]); | |
359 | 184 | auto row1 = vld1q(&src_row[1 * VecTraits::num_lanes()]); | |
360 | 184 | auto row2 = vld1q(&src_row[2 * VecTraits::num_lanes()]); | |
361 | 184 | auto row3 = vld1q(&src_row[3 * VecTraits::num_lanes()]); | |
362 | 184 | acc0 = O::operation(acc0, row0); | |
363 | 184 | acc1 = O::operation(acc1, row1); | |
364 | 184 | acc2 = O::operation(acc2, row2); | |
365 | 184 | acc3 = O::operation(acc3, row3); | |
366 | 184 | } | |
367 | |||
368 | 68 | auto dst_row = &dst_rows[index]; | |
369 | 68 | vst1q(&dst_row[0 * VecTraits::num_lanes()], acc0); | |
370 | 68 | vst1q(&dst_row[1 * VecTraits::num_lanes()], acc1); | |
371 | 68 | vst1q(&dst_row[2 * VecTraits::num_lanes()], acc2); | |
372 | 68 | vst1q(&dst_row[3 * VecTraits::num_lanes()], acc3); | |
373 | 68 | } | |
374 | |||
375 | 92 | void vector_path_2x(Rows<const ScalarType> src_rows, | |
376 | Rows<ScalarType> dst_rows, const size_t index) { | ||
377 | 92 | const auto *src_row = &src_rows[index]; | |
378 | 92 | auto acc0 = vld1q(&src_row[0]); | |
379 | 92 | auto acc1 = vld1q(&src_row[VecTraits::num_lanes()]); | |
380 | |||
381 |
4/4✓ Branch 0 taken 40 times.
✓ Branch 1 taken 104 times.
✓ Branch 2 taken 52 times.
✓ Branch 3 taken 236 times.
|
432 | for (size_t width = 1; width < kernel_.width(); ++width) { |
382 | 340 | src_row = &src_rows[index + width * src_rows.channels()]; | |
383 | 340 | auto row0 = vld1q(&src_row[0 * VecTraits::num_lanes()]); | |
384 | 340 | auto row1 = vld1q(&src_row[1 * VecTraits::num_lanes()]); | |
385 | 340 | acc0 = O::operation(acc0, row0); | |
386 | 340 | acc1 = O::operation(acc1, row1); | |
387 | 340 | } | |
388 | |||
389 | 92 | auto dst_row = &dst_rows[index]; | |
390 | 92 | vst1q(&dst_row[0], acc0); | |
391 | 92 | vst1q(&dst_row[VecTraits::num_lanes()], acc1); | |
392 | 92 | } | |
393 | |||
394 | 1512 | void vector_path(Rows<const ScalarType> src_rows, Rows<ScalarType> dst_rows, | |
395 | const size_t index) { | ||
396 | 1512 | auto acc = vld1q(&src_rows[index]); | |
397 | |||
398 |
4/4✓ Branch 0 taken 902 times.
✓ Branch 1 taken 2292 times.
✓ Branch 2 taken 610 times.
✓ Branch 3 taken 2520 times.
|
6324 | for (size_t width = 1; width < kernel_.width(); ++width) { |
399 | // TODO: Check if EXT was any faster. | ||
400 | 4812 | const auto *src_row = &src_rows[index + width * src_rows.channels()]; | |
401 | 4812 | acc = O::operation(acc, vld1q(&src_row[0])); | |
402 | 4812 | } | |
403 | |||
404 | 1512 | vst1q(&dst_rows[index], acc); | |
405 | 1512 | } | |
406 | |||
407 | 8301 | void scalar_path(Rows<const ScalarType> src_rows, Rows<ScalarType> dst_rows, | |
408 | const size_t index) { | ||
409 | 8301 | auto acc = src_rows[index]; | |
410 | |||
411 |
4/4✓ Branch 0 taken 4507 times.
✓ Branch 1 taken 13656 times.
✓ Branch 2 taken 3794 times.
✓ Branch 3 taken 13880 times.
|
35837 | for (size_t width = 1; width < kernel_.width(); ++width) { |
412 | 27536 | disable_loop_vectorization(); | |
413 | 27536 | acc = O::operation(acc, src_rows[index + width * src_rows.channels()]); | |
414 | 27536 | } | |
415 | |||
416 | 8301 | dst_rows[index] = acc; | |
417 | 8301 | } | |
418 | |||
419 | Rectangle rect_; | ||
420 | Rectangle kernel_; | ||
421 | }; // end of class HorizontalOp<ScalarType, O> | ||
422 | |||
423 | template <typename ScalarType> | ||
424 | class Min final { | ||
425 | public: | ||
426 | using VecTraits = neon::VecTraits<ScalarType>; | ||
427 | using VectorType = typename VecTraits::VectorType; | ||
428 | |||
429 | 4334 | static VectorType operation(VectorType lhs, VectorType rhs) { | |
430 | 4334 | return vminq_u8(lhs, rhs); | |
431 | } | ||
432 | |||
433 | 18378 | static ScalarType operation(ScalarType lhs, ScalarType rhs) { | |
434 | 18378 | return std::min(lhs, rhs); | |
435 | } | ||
436 | }; // end of class Min<ScalarType> | ||
437 | |||
438 | template <typename ScalarType> | ||
439 | class Max final { | ||
440 | public: | ||
441 | using VecTraits = neon::VecTraits<ScalarType>; | ||
442 | using VectorType = typename VecTraits::VectorType; | ||
443 | |||
444 | 4464 | static VectorType operation(VectorType lhs, VectorType rhs) { | |
445 | 4464 | return vmaxq_u8(lhs, rhs); | |
446 | } | ||
447 | |||
448 | 20661 | static ScalarType operation(ScalarType lhs, ScalarType rhs) { | |
449 | 20661 | return std::max(lhs, rhs); | |
450 | } | ||
451 | }; // end of class Max<ScalarType> | ||
452 | |||
453 | template <typename T> | ||
454 | using VerticalMin = VerticalOp<T, Min<T>>; | ||
455 | template <typename T> | ||
456 | using VerticalMax = VerticalOp<T, Max<T>>; | ||
457 | |||
458 | template <typename T> | ||
459 | using HorizontalMin = HorizontalOp<T, Min<T>>; | ||
460 | template <typename T> | ||
461 | using HorizontalMax = HorizontalOp<T, Max<T>>; | ||
462 | |||
463 | // Helper structure for dilate. | ||
464 | template <typename ScalarType> | ||
465 | class DilateOperation final { | ||
466 | public: | ||
467 | using SourceType = ScalarType; | ||
468 | using BufferType = ScalarType; | ||
469 | using DestinationType = ScalarType; | ||
470 | using CopyData = MorphologyWorkspace::CopyDataMemcpy<ScalarType>; | ||
471 | |||
472 | 204 | explicit DilateOperation(Rectangle kernel) : kernel_{kernel} {} | |
473 | |||
474 | 1531 | void process_horizontal(Rectangle rect, Rows<const SourceType> src_rows, | |
475 | Rows<BufferType> dst_rows) { | ||
476 | 3062 | neon::HorizontalMax<ScalarType>{rect, kernel_}.process_rows(src_rows, | |
477 | 1531 | dst_rows); | |
478 | 1531 | } | |
479 | |||
480 | 206 | void process_vertical(Rectangle rect, IndirectRows<BufferType> src_rows, | |
481 | Rows<DestinationType> dst_rows) { | ||
482 | 412 | neon::VerticalMax<ScalarType>{rect, kernel_}.process_rows(src_rows, | |
483 | 206 | dst_rows); | |
484 | 206 | } | |
485 | |||
486 | private: | ||
487 | Rectangle kernel_; | ||
488 | }; // end of class DilateOperation<ScalarType> | ||
489 | |||
490 | template <typename T> | ||
491 | 186 | kleidicv_error_t dilate(const T *src, size_t src_stride, T *dst, | |
492 | size_t dst_stride, size_t width, size_t height, | ||
493 | kleidicv_morphology_context_t *context) { | ||
494 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 185 times.
|
186 | CHECK_POINTERS(context); |
495 |
4/4✓ Branch 0 taken 1 times.
✓ Branch 1 taken 184 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 184 times.
|
185 | CHECK_POINTER_AND_STRIDE(src, src_stride, height); |
496 |
4/4✓ Branch 0 taken 1 times.
✓ Branch 1 taken 183 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 183 times.
|
184 | CHECK_POINTER_AND_STRIDE(dst, dst_stride, height); |
497 |
6/6✓ Branch 0 taken 1 times.
✓ Branch 1 taken 182 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 181 times.
✓ Branch 4 taken 2 times.
✓ Branch 5 taken 181 times.
|
183 | CHECK_IMAGE_SIZE(width, height); |
498 | |||
499 | 181 | auto *workspace = reinterpret_cast<MorphologyWorkspace *>(context); | |
500 | |||
501 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 180 times.
|
181 | if (workspace->type_size() != sizeof(T)) { |
502 | 1 | return KLEIDICV_ERROR_CONTEXT_MISMATCH; | |
503 | } | ||
504 | |||
505 | 180 | Rectangle rect{width, height}; | |
506 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 178 times.
|
180 | if (workspace->image_size() != rect) { |
507 | 2 | return KLEIDICV_ERROR_CONTEXT_MISMATCH; | |
508 | } | ||
509 | |||
510 | // Currently valid, will need to be changed if morphology supports more border | ||
511 | // types, like KLEIDICV_BORDER_TYPE_REVERSE. | ||
512 | 178 | Rectangle kernel{workspace->kernel()}; | |
513 |
4/4✓ Branch 0 taken 174 times.
✓ Branch 1 taken 4 times.
✓ Branch 2 taken 2 times.
✓ Branch 3 taken 172 times.
|
178 | if (width < kernel.width() - 1 || height < kernel.height() - 1) { |
514 | 6 | return KLEIDICV_ERROR_NOT_IMPLEMENTED; | |
515 | } | ||
516 | |||
517 | 172 | Rows<const T> src_rows{src, src_stride, workspace->channels()}; | |
518 | 172 | Rows<T> dst_rows{dst, dst_stride, workspace->channels()}; | |
519 | 172 | Margin margin{workspace->kernel(), workspace->anchor()}; | |
520 | |||
521 | 172 | Rows<const T> current_src_rows = src_rows; | |
522 | 172 | Rows<T> current_dst_rows = dst_rows; | |
523 |
2/2✓ Branch 0 taken 204 times.
✓ Branch 1 taken 172 times.
|
376 | for (size_t iteration = 0; iteration < workspace->iterations(); ++iteration) { |
524 | 204 | DilateOperation<T> operation{kernel}; | |
525 | 408 | workspace->process(rect, current_src_rows, current_dst_rows, margin, | |
526 | 204 | workspace->border_type(), operation); | |
527 | // Update source for the next iteration. | ||
528 | 204 | current_src_rows = dst_rows; | |
529 | 204 | } | |
530 | 172 | return KLEIDICV_OK; | |
531 | 186 | } | |
532 | |||
533 | // Helper structure for erode. | ||
534 | template <typename ScalarType> | ||
535 | class ErodeOperation final { | ||
536 | public: | ||
537 | using SourceType = ScalarType; | ||
538 | using BufferType = ScalarType; | ||
539 | using DestinationType = ScalarType; | ||
540 | using CopyData = MorphologyWorkspace::CopyDataMemcpy<ScalarType>; | ||
541 | |||
542 | 172 | explicit ErodeOperation(Rectangle kernel) : kernel_{kernel} {} | |
543 | |||
544 | 1095 | void process_horizontal(Rectangle rect, Rows<const SourceType> src_rows, | |
545 | Rows<BufferType> dst_rows) { | ||
546 | 2190 | neon::HorizontalMin<ScalarType>{rect, kernel_}.process_rows(src_rows, | |
547 | 1095 | dst_rows); | |
548 | 1095 | } | |
549 | |||
550 | 174 | void process_vertical(Rectangle rect, IndirectRows<BufferType> src_rows, | |
551 | Rows<DestinationType> dst_rows) { | ||
552 | 348 | neon::VerticalMin<ScalarType>{rect, kernel_}.process_rows(src_rows, | |
553 | 174 | dst_rows); | |
554 | 174 | } | |
555 | |||
556 | private: | ||
557 | Rectangle kernel_; | ||
558 | }; // end of class ErodeOperation<ScalarType> | ||
559 | |||
560 | template <typename T> | ||
561 | 170 | kleidicv_error_t erode(const T *src, size_t src_stride, T *dst, | |
562 | size_t dst_stride, size_t width, size_t height, | ||
563 | kleidicv_morphology_context_t *context) { | ||
564 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 169 times.
|
170 | CHECK_POINTERS(context); |
565 |
4/4✓ Branch 0 taken 1 times.
✓ Branch 1 taken 168 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 168 times.
|
169 | CHECK_POINTER_AND_STRIDE(src, src_stride, height); |
566 |
4/4✓ Branch 0 taken 1 times.
✓ Branch 1 taken 167 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 167 times.
|
168 | CHECK_POINTER_AND_STRIDE(dst, dst_stride, height); |
567 |
6/6✓ Branch 0 taken 1 times.
✓ Branch 1 taken 166 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 165 times.
✓ Branch 4 taken 2 times.
✓ Branch 5 taken 165 times.
|
167 | CHECK_IMAGE_SIZE(width, height); |
568 | |||
569 | 165 | auto *workspace = reinterpret_cast<MorphologyWorkspace *>(context); | |
570 | |||
571 |
2/2✓ Branch 0 taken 1 times.
✓ Branch 1 taken 164 times.
|
165 | if (workspace->type_size() != sizeof(T)) { |
572 | 1 | return KLEIDICV_ERROR_CONTEXT_MISMATCH; | |
573 | } | ||
574 | |||
575 | 164 | Rectangle rect{width, height}; | |
576 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 162 times.
|
164 | if (workspace->image_size() != rect) { |
577 | 2 | return KLEIDICV_ERROR_CONTEXT_MISMATCH; | |
578 | } | ||
579 | |||
580 | // Currently valid, will need to be changed if morphology supports more border | ||
581 | // types, like KLEIDICV_BORDER_TYPE_REVERSE. | ||
582 | 162 | Rectangle kernel{workspace->kernel()}; | |
583 |
4/4✓ Branch 0 taken 158 times.
✓ Branch 1 taken 4 times.
✓ Branch 2 taken 2 times.
✓ Branch 3 taken 156 times.
|
162 | if (width < kernel.width() - 1 || height < kernel.height() - 1) { |
584 | 6 | return KLEIDICV_ERROR_NOT_IMPLEMENTED; | |
585 | } | ||
586 | |||
587 | 156 | Rows<const T> src_rows{src, src_stride, workspace->channels()}; | |
588 | 156 | Rows<T> dst_rows{dst, dst_stride, workspace->channels()}; | |
589 | 156 | Margin margin{workspace->kernel(), workspace->anchor()}; | |
590 | |||
591 | 156 | Rows<const T> current_src_rows = src_rows; | |
592 | 156 | Rows<T> current_dst_rows = dst_rows; | |
593 |
2/2✓ Branch 0 taken 172 times.
✓ Branch 1 taken 156 times.
|
328 | for (size_t iteration = 0; iteration < workspace->iterations(); ++iteration) { |
594 | 172 | ErodeOperation<T> operation{kernel}; | |
595 | 344 | workspace->process(rect, current_src_rows, current_dst_rows, margin, | |
596 | 172 | workspace->border_type(), operation); | |
597 | // Update source for the next iteration. | ||
598 | 172 | current_src_rows = dst_rows; | |
599 | 172 | } | |
600 | 156 | return KLEIDICV_OK; | |
601 | 170 | } | |
602 | |||
603 | #define KLEIDICV_INSTANTIATE_TEMPLATE(name, type) \ | ||
604 | template KLEIDICV_TARGET_FN_ATTRS kleidicv_error_t name<type>( \ | ||
605 | const type *src, size_t src_stride, type *dst, size_t dst_stride, \ | ||
606 | size_t width, size_t height, kleidicv_morphology_context_t *context) | ||
607 | |||
608 | KLEIDICV_INSTANTIATE_TEMPLATE(dilate, uint8_t); | ||
609 | KLEIDICV_INSTANTIATE_TEMPLATE(erode, uint8_t); | ||
610 | |||
611 | } // namespace kleidicv::neon | ||
612 |