Line | Branch | Exec | Source |
---|---|---|---|
1 | // SPDX-FileCopyrightText: 2025 Arm Limited and/or its affiliates <open-source-office@arm.com> | ||
2 | // | ||
3 | // SPDX-License-Identifier: Apache-2.0 | ||
4 | |||
5 | #include "kleidicv/ctypes.h" | ||
6 | #include "kleidicv/filters/median_blur.h" | ||
7 | #include "kleidicv/kleidicv.h" | ||
8 | #include "kleidicv/neon.h" | ||
9 | #include "median_blur_border_handling.h" | ||
10 | |||
11 | namespace kleidicv::neon { | ||
12 | |||
13 | // B. Weiss, "Fast Median and Bilateral Filtering," in *ACM SIGGRAPH 2006 | ||
14 | // Papers*, ACM, New York, NY, USA, pp. 519–526, 2006. | ||
15 | // The paper is currently available at: | ||
16 | // http://mesh.brown.edu/engn1610/refs/Weiss-siggraph2006.pdf | ||
17 | class MedianBlurSmallHist { | ||
18 | public: | ||
19 | 75 | MedianBlurSmallHist() : fine{}, coarse{} {} | |
20 | |||
21 | 150 | void process_pixels_with_horizontal_borders( | |
22 | Rectangle image_dimensions, Point starting_coordinates, | ||
23 | Point ending_coordinates, Rows<const uint8_t> src_rows, | ||
24 | Rows<uint8_t> dst_rows, size_t ksize, FixedBorderType border_type) { | ||
25 | 150 | const size_t kMargin = ksize / 2; | |
26 | |||
27 |
2/2✓ Branch 0 taken 150 times.
✓ Branch 1 taken 1152 times.
|
1302 | for (size_t w = starting_coordinates.x(); w < ending_coordinates.x(); w++) { |
28 |
2/2✓ Branch 0 taken 2448 times.
✓ Branch 1 taken 1152 times.
|
3600 | for (ptrdiff_t ch = 0; ch < static_cast<ptrdiff_t>(src_rows.channels()); |
29 | 2448 | ch++) { | |
30 | 2448 | scalar_clear_histogram(); | |
31 | |||
32 | // We initialize with ksize rows to allow merging of | ||
33 | // histogram increment and decrement operations in the main loop. | ||
34 | // This extra initial load enables a single update phase and avoids | ||
35 | // splitting the logic into separate steps. | ||
36 |
2/2✓ Branch 0 taken 28512 times.
✓ Branch 1 taken 2448 times.
|
30960 | for (size_t r = 0; r < ksize; r++) { |
37 |
2/2✓ Branch 0 taken 353808 times.
✓ Branch 1 taken 28512 times.
|
382320 | for (size_t c = 0; c < ksize; c++) { |
38 | 707616 | const ptrdiff_t valid_h = | |
39 | 707616 | get_physical_index(starting_coordinates.y() + r - kMargin, | |
40 | 353808 | image_dimensions.height(), border_type); | |
41 | 707616 | const ptrdiff_t valid_w = get_physical_index( | |
42 | 353808 | w + c - kMargin, image_dimensions.width(), border_type); | |
43 | |||
44 | 353808 | uint8_t pixel = src_rows.at(valid_h, valid_w)[ch]; | |
45 | |||
46 | 353808 | scalar_initialize_histogram(pixel); | |
47 | 353808 | } | |
48 | 28512 | } | |
49 | |||
50 | 2448 | const uint8_t median_value = scalar_find_median(ksize); | |
51 | |||
52 | 9792 | dst_rows.at(static_cast<ptrdiff_t>(starting_coordinates.y()), | |
53 | 9792 | static_cast<ptrdiff_t>(w))[ch] = median_value; | |
54 | |||
55 |
2/2✓ Branch 0 taken 47280 times.
✓ Branch 1 taken 2448 times.
|
49728 | for (size_t h = starting_coordinates.y() + 1; |
56 | 49728 | h < ending_coordinates.y(); h++) { | |
57 | 94560 | const ptrdiff_t valid_new_h = get_physical_index( | |
58 | 47280 | h + kMargin, image_dimensions.height(), border_type); | |
59 | |||
60 | 94560 | const ptrdiff_t valid_old_h = get_physical_index( | |
61 | 47280 | h - kMargin - 1, image_dimensions.height(), border_type); | |
62 | |||
63 |
2/2✓ Branch 0 taken 548640 times.
✓ Branch 1 taken 47280 times.
|
595920 | for (size_t c = 0; c < ksize; c++) { |
64 | 1097280 | const ptrdiff_t valid_w = get_physical_index( | |
65 | 548640 | w + c - kMargin, image_dimensions.width(), border_type); | |
66 | |||
67 | 548640 | uint8_t incoming_pixel = src_rows.at(valid_new_h, valid_w)[ch]; | |
68 | |||
69 | 548640 | uint8_t outgoing_pixel = src_rows.at(valid_old_h, valid_w)[ch]; | |
70 | |||
71 | 548640 | scalar_update_histogram(incoming_pixel, outgoing_pixel); | |
72 | 548640 | } | |
73 | |||
74 | 47280 | const uint8_t median_value = scalar_find_median(ksize); | |
75 | |||
76 | 189120 | dst_rows.at(static_cast<ptrdiff_t>(h), | |
77 | 189120 | static_cast<ptrdiff_t>(w))[ch] = median_value; | |
78 | 47280 | } | |
79 | 2448 | } | |
80 | 1152 | } | |
81 | 150 | } | |
82 | |||
83 | 75 | void process_pixels_without_horizontal_borders( | |
84 | Rectangle image_dimensions, Point starting_coordinates, | ||
85 | Point ending_coordinates, Rows<const uint8_t> src_rows, | ||
86 | Rows<uint8_t> dst_rows, size_t ksize, FixedBorderType border_type) { | ||
87 | 75 | const size_t step = sizeof(uint8x16_t); | |
88 | 75 | const size_t KMargin_w = (ksize / 2) * src_rows.channels(); | |
89 | 75 | const size_t KMargin_h = (ksize / 2); | |
90 | |||
91 |
2/2✓ Branch 0 taken 75 times.
✓ Branch 1 taken 258 times.
|
333 | for (size_t w = starting_coordinates.x(); w < ending_coordinates.x(); |
92 | 258 | w += step) { | |
93 | 258 | vector_clear_histogram(); | |
94 | |||
95 | // We initialize with ksize rows to allow merging of | ||
96 | // histogram increment and decrement operations in the main loop. | ||
97 | // This extra initial load enables a single update phase and avoids | ||
98 | // splitting the logic into separate steps. | ||
99 |
2/2✓ Branch 0 taken 3042 times.
✓ Branch 1 taken 258 times.
|
3300 | for (size_t r = 0; r < ksize; r++) { |
100 | 6084 | const ptrdiff_t vertical_index = | |
101 | 6084 | get_physical_index(starting_coordinates.y() + r - KMargin_h, | |
102 | 3042 | image_dimensions.height(), border_type); | |
103 | |||
104 |
2/2✓ Branch 0 taken 38178 times.
✓ Branch 1 taken 3042 times.
|
41220 | for (size_t c = 0; c < ksize; c++) { |
105 | 76356 | const size_t horizontal_index = | |
106 | 38178 | w + c * src_rows.channels() - KMargin_w; | |
107 | |||
108 | 38178 | uint8x16_t pixel = vld1q_u8( | |
109 | &src_rows[vertical_index * src_rows.stride() + horizontal_index]); | ||
110 | |||
111 | 38178 | vector_initialize_histogram(pixel); | |
112 | 38178 | } | |
113 | 3042 | } | |
114 | |||
115 | 258 | const uint8x16_t median_value = vector_find_median(ksize); | |
116 | |||
117 | 258 | vst1q_u8(&dst_rows[starting_coordinates.y() * dst_rows.stride() + w], | |
118 | median_value); | ||
119 | |||
120 |
2/2✓ Branch 0 taken 4950 times.
✓ Branch 1 taken 258 times.
|
5208 | for (size_t h = starting_coordinates.y() + 1; h < ending_coordinates.y(); |
121 | 4950 | ++h) { | |
122 | 9900 | const ptrdiff_t vertical_index_new = get_physical_index( | |
123 | 4950 | h + KMargin_h, image_dimensions.height(), border_type); | |
124 | |||
125 | 9900 | const ptrdiff_t vertical_index_old = get_physical_index( | |
126 | 4950 | h - KMargin_h - 1, image_dimensions.height(), border_type); | |
127 | |||
128 |
2/2✓ Branch 0 taken 58230 times.
✓ Branch 1 taken 4950 times.
|
63180 | for (size_t c = 0; c < ksize; c++) { |
129 | 58230 | size_t horizontal_index = w + c * src_rows.channels() - KMargin_w; | |
130 | |||
131 | 116460 | uint8x16_t incoming_pixels = | |
132 | 58230 | vld1q_u8(&src_rows[vertical_index_new * src_rows.stride() + | |
133 | horizontal_index]); | ||
134 | |||
135 | 116460 | uint8x16_t outgoing_pixels = | |
136 | 58230 | vld1q_u8(&src_rows[vertical_index_old * src_rows.stride() + | |
137 | horizontal_index]); | ||
138 | |||
139 | 58230 | vector_update_histogram(incoming_pixels, outgoing_pixels); | |
140 | 58230 | } | |
141 | |||
142 | 4950 | const uint8x16_t median_value = vector_find_median(ksize); | |
143 | |||
144 | 4950 | vst1q_u8(&dst_rows[h * dst_rows.stride() + w], median_value); | |
145 | 4950 | } | |
146 | 258 | } | |
147 | 75 | } | |
148 | |||
149 | private: | ||
150 | // The 'fine' and 'coarse' histograms are shared between both scalar and | ||
151 | // vector operations. Their buffer sizes are allocated based on the | ||
152 | // vectorized case to ensure compatibility and avoid reallocation. | ||
153 | // In case of vectorized execution, 'fine' and 'coarse' are actually | ||
154 | // implemented as 16 interleaved histograms, one per vector lane. | ||
155 | uint8_t fine[4096]; | ||
156 | uint8_t coarse[256]; | ||
157 | |||
158 | // In scalar_clear_histogram, we only clear the relevant portions of the | ||
159 | // 'fine' and 'coarse' buffers that are actually used during computation. This | ||
160 | // avoids unnecessary memory operations. | ||
161 | 2448 | void scalar_clear_histogram() { | |
162 | 2448 | memset(fine, 0, sizeof(fine[0]) * 256); | |
163 | 2448 | memset(coarse, 0, sizeof(coarse[0]) * 16); | |
164 | 2448 | } | |
165 | |||
166 | 258 | void vector_clear_histogram() { | |
167 | 258 | memset(fine, 0, sizeof(uint8_t) * 4096); | |
168 | 258 | memset(coarse, 0, sizeof(uint8_t) * 256); | |
169 | 258 | } | |
170 | |||
171 | // Before the main vertical loop over 'height', the histogram must be | ||
172 | // initialized for each new 'width'. This is done using either | ||
173 | // scalar_initialize_histogram or vector_initialize_histogram depending on the | ||
174 | // processing mode. These functions preload the histogram using rows from the | ||
175 | // source image to enable efficient sliding window updates during vertical | ||
176 | // traversal. | ||
177 | 353808 | void scalar_initialize_histogram(uint8_t incoming_pixel) { | |
178 | 353808 | fine[incoming_pixel]++; | |
179 | 353808 | coarse[incoming_pixel >> 4]++; | |
180 | 353808 | } | |
181 | |||
182 | 38178 | void vector_initialize_histogram(uint8x16_t& incoming_pixels) { | |
183 | KLEIDICV_FORCE_LOOP_UNROLL | ||
184 |
2/2✓ Branch 0 taken 610848 times.
✓ Branch 1 taken 38178 times.
|
649026 | for (int i = 0; i < 16; i++) { |
185 | 610848 | fine[incoming_pixels[i] * 16 + i]++; | |
186 | 610848 | } | |
187 | |||
188 | 38178 | incoming_pixels = vshrq_n_u8(incoming_pixels, 4); | |
189 | |||
190 | 38178 | uint8x16_t* vec_coarse = reinterpret_cast<uint8x16_t*>(coarse); | |
191 | 38178 | vec_coarse[0] = vsubq(vec_coarse[0], vceqzq_u8(incoming_pixels)); | |
192 | KLEIDICV_FORCE_LOOP_UNROLL | ||
193 |
2/2✓ Branch 0 taken 38178 times.
✓ Branch 1 taken 572670 times.
|
610848 | for (int i = 1; i < 16; i++) { |
194 | 572670 | uint8x16_t index = vdupq_n_u8(i); | |
195 | 572670 | vec_coarse[i] = vsubq(vec_coarse[i], vceqq(incoming_pixels, index)); | |
196 | 572670 | } | |
197 | 38178 | } | |
198 | |||
199 | // During vertical traversal (the main 'height' loop), each sliding window | ||
200 | // iteration introduces a new incoming row and removes an outgoing one. The | ||
201 | // histogram must be updated accordingly by subtracting the contributions of | ||
202 | // the outgoing row and adding those of the incoming row. | ||
203 | // In many cases, incoming and outgoing pixels may be equal, so we perform a | ||
204 | // conditional check to avoid unnecessary updates. | ||
205 | // Both increment and decrement operations are handled inside the same | ||
206 | // function (scalar_update_histogram / vector_update_histogram) for | ||
207 | // efficiency. | ||
208 | 548640 | void scalar_update_histogram(uint8_t& incoming_pixel, | |
209 | uint8_t& outgoing_pixel) { | ||
210 |
2/2✓ Branch 0 taken 2170 times.
✓ Branch 1 taken 546470 times.
|
548640 | if (incoming_pixel != outgoing_pixel) { |
211 | 546470 | fine[incoming_pixel]++; | |
212 | 546470 | coarse[incoming_pixel >> 4]++; | |
213 | 546470 | fine[outgoing_pixel]--; | |
214 | 546470 | coarse[outgoing_pixel >> 4]--; | |
215 | 546470 | } | |
216 | 548640 | } | |
217 | |||
218 | 58230 | void vector_update_histogram(uint8x16_t& incoming_pixels, | |
219 | uint8x16_t& outgoing_pixels) { | ||
220 | KLEIDICV_FORCE_LOOP_UNROLL | ||
221 |
2/2✓ Branch 0 taken 931680 times.
✓ Branch 1 taken 58230 times.
|
989910 | for (int i = 0; i < 16; i++) { |
222 | 931680 | fine[incoming_pixels[i] * 16 + i]++; | |
223 | 931680 | fine[outgoing_pixels[i] * 16 + i]--; | |
224 | 931680 | } | |
225 | |||
226 | 58230 | uint8x16_t* vec_coarse = reinterpret_cast<uint8x16_t*>(coarse); | |
227 | 58230 | incoming_pixels = vshrq_n<4>(incoming_pixels); | |
228 | 58230 | outgoing_pixels = vshrq_n<4>(outgoing_pixels); | |
229 | |||
230 | 116460 | uint8x16_t delta = | |
231 | 58230 | vsubq(vceqzq_u8(outgoing_pixels), vceqzq_u8(incoming_pixels)); | |
232 | 58230 | vec_coarse[0] = vaddq(vec_coarse[0], delta); | |
233 | |||
234 | KLEIDICV_FORCE_LOOP_UNROLL | ||
235 |
2/2✓ Branch 0 taken 58230 times.
✓ Branch 1 taken 873450 times.
|
931680 | for (int i = 1; i < 16; i++) { |
236 | 873450 | uint8x16_t index = vdupq_n_u8(i); | |
237 | 873450 | delta = | |
238 | 873450 | vsubq(vceqq(outgoing_pixels, index), vceqq(incoming_pixels, index)); | |
239 | 873450 | vec_coarse[i] = vaddq(vec_coarse[i], delta); | |
240 | 873450 | } | |
241 | 58230 | } | |
242 | |||
243 | // To find the median efficiently, we first scan the coarse histogram to | ||
244 | // identify the segment (coarse bin) where the median value lies. This helps | ||
245 | // narrow down the search range in the fine histogram. Once the correct coarse | ||
246 | // bin is located, we scan the corresponding segment in the fine histogram | ||
247 | // until the cumulative distribution function (CDF) reaches the target CDF | ||
248 | 49728 | uint8_t scalar_find_median(size_t ksize) { | |
249 | // The target median index in a sorted window | ||
250 | 49728 | const uint8_t target_cdf = (ksize * ksize) / 2; | |
251 | |||
252 | // Variables for histogram scanning | ||
253 | 49728 | uint8_t cumulative_sum = 0; | |
254 | 49728 | int fine_index = 0; | |
255 | 49728 | int coarse_index = 0; | |
256 | |||
257 | // Phase 1: Coarse histogram scan to find the correct bin range | ||
258 | 419703 | while (true) { | |
259 |
2/2✓ Branch 0 taken 369975 times.
✓ Branch 1 taken 49728 times.
|
419703 | if ((cumulative_sum + coarse[coarse_index]) > target_cdf) { |
260 | 49728 | fine_index = coarse_index * 16; | |
261 | 49728 | break; | |
262 | } | ||
263 | 369975 | cumulative_sum += coarse[coarse_index]; | |
264 | 369975 | coarse_index++; | |
265 | } | ||
266 | |||
267 | // Phase 2: Fine histogram scan to locate the exact median value | ||
268 | 433065 | while (true) { | |
269 | 433065 | cumulative_sum += fine[fine_index]; | |
270 |
2/2✓ Branch 0 taken 49728 times.
✓ Branch 1 taken 383337 times.
|
433065 | if (cumulative_sum > target_cdf) { |
271 | 49728 | break; | |
272 | } | ||
273 | 383337 | fine_index++; | |
274 | } | ||
275 | |||
276 | 99456 | return fine_index; | |
277 | 49728 | } | |
278 | |||
279 | 5208 | uint8x16_t vector_find_median(size_t ksize) { | |
280 | // Calculate the target median index based on kernel size | ||
281 | 5208 | const uint8x16_t target_cdf = vdupq_n_u8((ksize * ksize) / 2); | |
282 | |||
283 | // Cumulative sum vector used for tracking the running histogram total | ||
284 | 5208 | uint8x16_t cumulative_sum = vdupq_n_u8(0); | |
285 | |||
286 | // Coarse histogram pointer (used to narrow the search) | ||
287 | 5208 | uint8x16_t* coarse_histogram = reinterpret_cast<uint8x16_t*>(coarse); | |
288 | |||
289 | // Coarse pass: Locate the coarse histogram bin range likely containing the | ||
290 | // median value This step identifies the starting fine histogram index for | ||
291 | // each lane, based on cumulative counts. It does not find the actual median | ||
292 | // yet. | ||
293 | 5208 | int coarse_index = 0; | |
294 | 5208 | int fine_index = 0; | |
295 | |||
296 | 39290 | while (true) { | |
297 | 78580 | uint8x16_t cumulative_sum_next = | |
298 | 39290 | vaddq(cumulative_sum, coarse_histogram[coarse_index]); | |
299 | 78580 | uint8x16_t coarse_threshold_exceeded = | |
300 | 39290 | vcgtq_u8(cumulative_sum_next, target_cdf); | |
301 | |||
302 |
2/2✓ Branch 0 taken 5208 times.
✓ Branch 1 taken 34082 times.
|
39290 | if (any_lane_set(coarse_threshold_exceeded)) { |
303 | 5208 | fine_index = coarse_index * 16; | |
304 | 5208 | break; | |
305 | } | ||
306 | |||
307 | 34082 | cumulative_sum = cumulative_sum_next; | |
308 | 34082 | coarse_index++; | |
309 | 39290 | } | |
310 | |||
311 | // Fine pass: Scan the fine histogram to find the exact median per lane | ||
312 | 5208 | uint8x16_t median_result = vdupq_n_u8(0); | |
313 | 5208 | uint8x16_t lane_found_mask = vdupq_n_u8(0); | |
314 | 5208 | uint8x16_t* fine_histogram = reinterpret_cast<uint8x16_t*>(fine); | |
315 | |||
316 | 214049 | while (true) { | |
317 | 214049 | cumulative_sum = vaddq(cumulative_sum, fine_histogram[fine_index]); | |
318 | |||
319 | 214049 | uint8x16_t still_searching_mask = vceqzq_u8(lane_found_mask); | |
320 | 214049 | median_result = | |
321 | 214049 | vbslq_u8(still_searching_mask, vdupq_n_u8(fine_index), median_result); | |
322 | 214049 | lane_found_mask = | |
323 | 214049 | vorrq_u8(lane_found_mask, vcgtq_u8(cumulative_sum, target_cdf)); | |
324 | |||
325 |
2/2✓ Branch 0 taken 5208 times.
✓ Branch 1 taken 208841 times.
|
214049 | if (all_lane_set(lane_found_mask)) { |
326 | 5208 | break; | |
327 | } | ||
328 | 208841 | fine_index++; | |
329 | 214049 | } | |
330 | |||
331 | 10416 | return median_result; | |
332 | 5208 | } | |
333 | |||
334 | 214049 | bool all_lane_set(uint8x16_t& v_u8) { | |
335 | 214049 | uint32x4_t v_u32 = vreinterpretq_u32_u8(v_u8); | |
336 | 428098 | return vminvq_u32(v_u32) == 0xffffffff; | |
337 | 214049 | } | |
338 | |||
339 | 39290 | bool any_lane_set(uint8x16_t v_u8) { | |
340 | 39290 | uint32x4_t v_u32 = vreinterpretq_u32_u8(v_u8); | |
341 | 78580 | return vmaxvq_u32(v_u32) != 0; | |
342 | 39290 | } | |
343 | }; | ||
344 | |||
345 | 75 | KLEIDICV_TARGET_FN_ATTRS kleidicv_error_t median_blur_small_hist_stripe_u8( | |
346 | const uint8_t* src, size_t src_stride, uint8_t* dst, size_t dst_stride, | ||
347 | size_t width, size_t height, size_t y_begin, size_t y_end, size_t channels, | ||
348 | size_t kernel_width, size_t kernel_height, FixedBorderType border_type) { | ||
349 | 75 | Rectangle image_dimensions{width, height}; | |
350 | 75 | Rows<const uint8_t> src_rows{src, src_stride, channels}; | |
351 | 75 | Rows<uint8_t> dst_rows{dst, dst_stride, channels}; | |
352 | 75 | MedianBlurSmallHist median_filter; | |
353 | 75 | const size_t kMargin = kernel_width / 2; | |
354 | |||
355 | // Process left border | ||
356 | 75 | size_t starting_width = 0; | |
357 | 75 | const size_t processing_left_width = kMargin; | |
358 | 75 | Point starting_left_coordinates{starting_width, y_begin}; | |
359 | 75 | Point ending_left_coordinates{starting_width + processing_left_width, y_end}; | |
360 | |||
361 | 75 | median_filter.process_pixels_with_horizontal_borders( | |
362 | 75 | image_dimensions, starting_left_coordinates, ending_left_coordinates, | |
363 | 75 | src_rows, dst_rows, kernel_height, border_type); | |
364 | |||
365 | // Process center region | ||
366 | 75 | starting_width = processing_left_width; | |
367 | // Compute the width of the center region that can be processed with NEON | ||
368 | // instructions. Subtract 2 * kMargin to exclude left and right borders, which | ||
369 | // are handled separately using scalar code due to varying border modes (e.g., | ||
370 | // REPLICATE, REFLECT, WRAP, REVERSE). Align the remaining width down to the | ||
371 | // nearest multiple of 16 to match NEON's 128-bit register width (16 bytes for | ||
372 | // uint8x16_t). | ||
373 | 75 | const size_t processing_center_width = ((width - 2 * kMargin) / 16) * 16; | |
374 | 75 | Point starting_center_coordinates{starting_width * channels, y_begin}; | |
375 | 150 | Point ending_center_coordinates{ | |
376 | 75 | (processing_center_width + starting_width) * channels, y_end}; | |
377 | |||
378 | 75 | median_filter.process_pixels_without_horizontal_borders( | |
379 | 75 | image_dimensions, starting_center_coordinates, ending_center_coordinates, | |
380 | 75 | src_rows, dst_rows, kernel_height, border_type); | |
381 | |||
382 | // Process right border | ||
383 | 75 | starting_width = processing_left_width + processing_center_width; | |
384 | 150 | const size_t processing_right_width = | |
385 | 75 | width - processing_left_width - processing_center_width; | |
386 | 75 | Point starting_right_coordinates{starting_width, y_begin}; | |
387 | 150 | Point ending_right_coordinates{starting_width + processing_right_width, | |
388 | 75 | y_end}; | |
389 | |||
390 | 75 | median_filter.process_pixels_with_horizontal_borders( | |
391 | 75 | image_dimensions, starting_right_coordinates, ending_right_coordinates, | |
392 | 75 | src_rows, dst_rows, kernel_height, border_type); | |
393 | |||
394 | 75 | return KLEIDICV_OK; | |
395 | 75 | } | |
396 | } // namespace kleidicv::neon | ||
397 |