| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // SPDX-FileCopyrightText: 2025 Arm Limited and/or its affiliates <open-source-office@arm.com> | ||
| 2 | // | ||
| 3 | // SPDX-License-Identifier: Apache-2.0 | ||
| 4 | |||
| 5 | #include "kleidicv/ctypes.h" | ||
| 6 | #include "kleidicv/filters/median_blur.h" | ||
| 7 | #include "kleidicv/kleidicv.h" | ||
| 8 | #include "kleidicv/neon.h" | ||
| 9 | #include "median_blur_border_handling.h" | ||
| 10 | |||
| 11 | namespace kleidicv::neon { | ||
| 12 | |||
| 13 | // B. Weiss, "Fast Median and Bilateral Filtering," in *ACM SIGGRAPH 2006 | ||
| 14 | // Papers*, ACM, New York, NY, USA, pp. 519–526, 2006. | ||
| 15 | // The paper is currently available at: | ||
| 16 | // http://mesh.brown.edu/engn1610/refs/Weiss-siggraph2006.pdf | ||
| 17 | class MedianBlurSmallHist { | ||
| 18 | public: | ||
| 19 | 100 | MedianBlurSmallHist() : fine{}, coarse{} {} | |
| 20 | |||
| 21 | 200 | void process_pixels_with_horizontal_borders( | |
| 22 | Rectangle image_dimensions, Point starting_coordinates, | ||
| 23 | Point ending_coordinates, Rows<const uint8_t> src_rows, | ||
| 24 | Rows<uint8_t> dst_rows, size_t ksize, FixedBorderType border_type) { | ||
| 25 | 200 | const size_t kMargin = ksize / 2; | |
| 26 | |||
| 27 |
2/2✓ Branch 0 taken 200 times.
✓ Branch 1 taken 1536 times.
|
1736 | for (size_t w = starting_coordinates.x(); w < ending_coordinates.x(); w++) { |
| 28 |
2/2✓ Branch 0 taken 3264 times.
✓ Branch 1 taken 1536 times.
|
4800 | for (ptrdiff_t ch = 0; ch < static_cast<ptrdiff_t>(src_rows.channels()); |
| 29 | 3264 | ch++) { | |
| 30 | 3264 | scalar_clear_histogram(); | |
| 31 | |||
| 32 | // We initialize with ksize rows to allow merging of | ||
| 33 | // histogram increment and decrement operations in the main loop. | ||
| 34 | // This extra initial load enables a single update phase and avoids | ||
| 35 | // splitting the logic into separate steps. | ||
| 36 |
2/2✓ Branch 0 taken 38016 times.
✓ Branch 1 taken 3264 times.
|
41280 | for (size_t r = 0; r < ksize; r++) { |
| 37 |
2/2✓ Branch 0 taken 471744 times.
✓ Branch 1 taken 38016 times.
|
509760 | for (size_t c = 0; c < ksize; c++) { |
| 38 | 943488 | const ptrdiff_t valid_h = | |
| 39 | 943488 | get_physical_index(starting_coordinates.y() + r - kMargin, | |
| 40 | 471744 | image_dimensions.height(), border_type); | |
| 41 | 943488 | const ptrdiff_t valid_w = get_physical_index( | |
| 42 | 471744 | w + c - kMargin, image_dimensions.width(), border_type); | |
| 43 | |||
| 44 | 471744 | uint8_t pixel = src_rows.at(valid_h, valid_w)[ch]; | |
| 45 | |||
| 46 | 471744 | scalar_initialize_histogram(pixel); | |
| 47 | 471744 | } | |
| 48 | 38016 | } | |
| 49 | |||
| 50 | 3264 | const uint8_t median_value = scalar_find_median(ksize); | |
| 51 | |||
| 52 | 13056 | dst_rows.at(static_cast<ptrdiff_t>(starting_coordinates.y()), | |
| 53 | 13056 | static_cast<ptrdiff_t>(w))[ch] = median_value; | |
| 54 | |||
| 55 |
2/2✓ Branch 0 taken 63040 times.
✓ Branch 1 taken 3264 times.
|
66304 | for (size_t h = starting_coordinates.y() + 1; |
| 56 | 66304 | h < ending_coordinates.y(); h++) { | |
| 57 | 126080 | const ptrdiff_t valid_new_h = get_physical_index( | |
| 58 | 63040 | h + kMargin, image_dimensions.height(), border_type); | |
| 59 | |||
| 60 | 126080 | const ptrdiff_t valid_old_h = get_physical_index( | |
| 61 | 63040 | h - kMargin - 1, image_dimensions.height(), border_type); | |
| 62 | |||
| 63 |
2/2✓ Branch 0 taken 731520 times.
✓ Branch 1 taken 63040 times.
|
794560 | for (size_t c = 0; c < ksize; c++) { |
| 64 | 1463040 | const ptrdiff_t valid_w = get_physical_index( | |
| 65 | 731520 | w + c - kMargin, image_dimensions.width(), border_type); | |
| 66 | |||
| 67 | 731520 | uint8_t incoming_pixel = src_rows.at(valid_new_h, valid_w)[ch]; | |
| 68 | |||
| 69 | 731520 | uint8_t outgoing_pixel = src_rows.at(valid_old_h, valid_w)[ch]; | |
| 70 | |||
| 71 | 731520 | scalar_update_histogram(incoming_pixel, outgoing_pixel); | |
| 72 | 731520 | } | |
| 73 | |||
| 74 | 63040 | const uint8_t median_value = scalar_find_median(ksize); | |
| 75 | |||
| 76 | 252160 | dst_rows.at(static_cast<ptrdiff_t>(h), | |
| 77 | 252160 | static_cast<ptrdiff_t>(w))[ch] = median_value; | |
| 78 | 63040 | } | |
| 79 | 3264 | } | |
| 80 | 1536 | } | |
| 81 | 200 | } | |
| 82 | |||
| 83 | 100 | void process_pixels_without_horizontal_borders( | |
| 84 | Rectangle image_dimensions, Point starting_coordinates, | ||
| 85 | Point ending_coordinates, Rows<const uint8_t> src_rows, | ||
| 86 | Rows<uint8_t> dst_rows, size_t ksize, FixedBorderType border_type) { | ||
| 87 | 100 | const size_t step = sizeof(uint8x16_t); | |
| 88 | 100 | const size_t KMargin_w = (ksize / 2) * src_rows.channels(); | |
| 89 | 100 | const size_t KMargin_h = (ksize / 2); | |
| 90 | |||
| 91 |
2/2✓ Branch 0 taken 100 times.
✓ Branch 1 taken 344 times.
|
444 | for (size_t w = starting_coordinates.x(); w < ending_coordinates.x(); |
| 92 | 344 | w += step) { | |
| 93 | 344 | vector_clear_histogram(); | |
| 94 | |||
| 95 | // We initialize with ksize rows to allow merging of | ||
| 96 | // histogram increment and decrement operations in the main loop. | ||
| 97 | // This extra initial load enables a single update phase and avoids | ||
| 98 | // splitting the logic into separate steps. | ||
| 99 |
2/2✓ Branch 0 taken 4056 times.
✓ Branch 1 taken 344 times.
|
4400 | for (size_t r = 0; r < ksize; r++) { |
| 100 | 8112 | const ptrdiff_t vertical_index = | |
| 101 | 8112 | get_physical_index(starting_coordinates.y() + r - KMargin_h, | |
| 102 | 4056 | image_dimensions.height(), border_type); | |
| 103 | |||
| 104 |
2/2✓ Branch 0 taken 50904 times.
✓ Branch 1 taken 4056 times.
|
54960 | for (size_t c = 0; c < ksize; c++) { |
| 105 | 101808 | const size_t horizontal_index = | |
| 106 | 50904 | w + c * src_rows.channels() - KMargin_w; | |
| 107 | |||
| 108 | 50904 | uint8x16_t pixel = vld1q_u8( | |
| 109 | &src_rows[vertical_index * src_rows.stride() + horizontal_index]); | ||
| 110 | |||
| 111 | 50904 | vector_initialize_histogram(pixel); | |
| 112 | 50904 | } | |
| 113 | 4056 | } | |
| 114 | |||
| 115 | 344 | const uint8x16_t median_value = vector_find_median(ksize); | |
| 116 | |||
| 117 | 344 | vst1q_u8(&dst_rows[starting_coordinates.y() * dst_rows.stride() + w], | |
| 118 | median_value); | ||
| 119 | |||
| 120 |
2/2✓ Branch 0 taken 6600 times.
✓ Branch 1 taken 344 times.
|
6944 | for (size_t h = starting_coordinates.y() + 1; h < ending_coordinates.y(); |
| 121 | 6600 | ++h) { | |
| 122 | 13200 | const ptrdiff_t vertical_index_new = get_physical_index( | |
| 123 | 6600 | h + KMargin_h, image_dimensions.height(), border_type); | |
| 124 | |||
| 125 | 13200 | const ptrdiff_t vertical_index_old = get_physical_index( | |
| 126 | 6600 | h - KMargin_h - 1, image_dimensions.height(), border_type); | |
| 127 | |||
| 128 |
2/2✓ Branch 0 taken 77640 times.
✓ Branch 1 taken 6600 times.
|
84240 | for (size_t c = 0; c < ksize; c++) { |
| 129 | 77640 | size_t horizontal_index = w + c * src_rows.channels() - KMargin_w; | |
| 130 | |||
| 131 | 155280 | uint8x16_t incoming_pixels = | |
| 132 | 77640 | vld1q_u8(&src_rows[vertical_index_new * src_rows.stride() + | |
| 133 | horizontal_index]); | ||
| 134 | |||
| 135 | 155280 | uint8x16_t outgoing_pixels = | |
| 136 | 77640 | vld1q_u8(&src_rows[vertical_index_old * src_rows.stride() + | |
| 137 | horizontal_index]); | ||
| 138 | |||
| 139 | 77640 | vector_update_histogram(incoming_pixels, outgoing_pixels); | |
| 140 | 77640 | } | |
| 141 | |||
| 142 | 6600 | const uint8x16_t median_value = vector_find_median(ksize); | |
| 143 | |||
| 144 | 6600 | vst1q_u8(&dst_rows[h * dst_rows.stride() + w], median_value); | |
| 145 | 6600 | } | |
| 146 | 344 | } | |
| 147 | 100 | } | |
| 148 | |||
| 149 | private: | ||
| 150 | // The 'fine' and 'coarse' histograms are shared between both scalar and | ||
| 151 | // vector operations. Their buffer sizes are allocated based on the | ||
| 152 | // vectorized case to ensure compatibility and avoid reallocation. | ||
| 153 | // In case of vectorized execution, 'fine' and 'coarse' are actually | ||
| 154 | // implemented as 16 interleaved histograms, one per vector lane. | ||
| 155 | uint8_t fine[4096]; | ||
| 156 | uint8_t coarse[256]; | ||
| 157 | |||
| 158 | // In scalar_clear_histogram, we only clear the relevant portions of the | ||
| 159 | // 'fine' and 'coarse' buffers that are actually used during computation. This | ||
| 160 | // avoids unnecessary memory operations. | ||
| 161 | 3264 | void scalar_clear_histogram() { | |
| 162 | 3264 | memset(fine, 0, sizeof(fine[0]) * 256); | |
| 163 | 3264 | memset(coarse, 0, sizeof(coarse[0]) * 16); | |
| 164 | 3264 | } | |
| 165 | |||
| 166 | 344 | void vector_clear_histogram() { | |
| 167 | 344 | memset(fine, 0, sizeof(uint8_t) * 4096); | |
| 168 | 344 | memset(coarse, 0, sizeof(uint8_t) * 256); | |
| 169 | 344 | } | |
| 170 | |||
| 171 | // Before the main vertical loop over 'height', the histogram must be | ||
| 172 | // initialized for each new 'width'. This is done using either | ||
| 173 | // scalar_initialize_histogram or vector_initialize_histogram depending on the | ||
| 174 | // processing mode. These functions preload the histogram using rows from the | ||
| 175 | // source image to enable efficient sliding window updates during vertical | ||
| 176 | // traversal. | ||
| 177 | 471744 | void scalar_initialize_histogram(uint8_t incoming_pixel) { | |
| 178 | 471744 | fine[incoming_pixel]++; | |
| 179 | 471744 | coarse[incoming_pixel >> 4]++; | |
| 180 | 471744 | } | |
| 181 | |||
| 182 | 50904 | void vector_initialize_histogram(uint8x16_t& incoming_pixels) { | |
| 183 | KLEIDICV_FORCE_LOOP_UNROLL | ||
| 184 |
2/2✓ Branch 0 taken 814464 times.
✓ Branch 1 taken 50904 times.
|
865368 | for (int i = 0; i < 16; i++) { |
| 185 | 814464 | fine[incoming_pixels[i] * 16 + i]++; | |
| 186 | 814464 | } | |
| 187 | |||
| 188 | 50904 | incoming_pixels = vshrq_n_u8(incoming_pixels, 4); | |
| 189 | |||
| 190 | 50904 | uint8x16_t* vec_coarse = reinterpret_cast<uint8x16_t*>(coarse); | |
| 191 | 50904 | vec_coarse[0] = vsubq(vec_coarse[0], vceqzq_u8(incoming_pixels)); | |
| 192 | KLEIDICV_FORCE_LOOP_UNROLL | ||
| 193 |
2/2✓ Branch 0 taken 50904 times.
✓ Branch 1 taken 763560 times.
|
814464 | for (int i = 1; i < 16; i++) { |
| 194 | 763560 | uint8x16_t index = vdupq_n_u8(i); | |
| 195 | 763560 | vec_coarse[i] = vsubq(vec_coarse[i], vceqq(incoming_pixels, index)); | |
| 196 | 763560 | } | |
| 197 | 50904 | } | |
| 198 | |||
| 199 | // During vertical traversal (the main 'height' loop), each sliding window | ||
| 200 | // iteration introduces a new incoming row and removes an outgoing one. The | ||
| 201 | // histogram must be updated accordingly by subtracting the contributions of | ||
| 202 | // the outgoing row and adding those of the incoming row. | ||
| 203 | // In many cases, incoming and outgoing pixels may be equal, so we perform a | ||
| 204 | // conditional check to avoid unnecessary updates. | ||
| 205 | // Both increment and decrement operations are handled inside the same | ||
| 206 | // function (scalar_update_histogram / vector_update_histogram) for | ||
| 207 | // efficiency. | ||
| 208 | 731520 | void scalar_update_histogram(uint8_t& incoming_pixel, | |
| 209 | uint8_t& outgoing_pixel) { | ||
| 210 |
2/2✓ Branch 0 taken 2649 times.
✓ Branch 1 taken 728871 times.
|
731520 | if (incoming_pixel != outgoing_pixel) { |
| 211 | 728871 | fine[incoming_pixel]++; | |
| 212 | 728871 | coarse[incoming_pixel >> 4]++; | |
| 213 | 728871 | fine[outgoing_pixel]--; | |
| 214 | 728871 | coarse[outgoing_pixel >> 4]--; | |
| 215 | 728871 | } | |
| 216 | 731520 | } | |
| 217 | |||
| 218 | 77640 | void vector_update_histogram(uint8x16_t& incoming_pixels, | |
| 219 | uint8x16_t& outgoing_pixels) { | ||
| 220 | KLEIDICV_FORCE_LOOP_UNROLL | ||
| 221 |
2/2✓ Branch 0 taken 1242240 times.
✓ Branch 1 taken 77640 times.
|
1319880 | for (int i = 0; i < 16; i++) { |
| 222 | 1242240 | fine[incoming_pixels[i] * 16 + i]++; | |
| 223 | 1242240 | fine[outgoing_pixels[i] * 16 + i]--; | |
| 224 | 1242240 | } | |
| 225 | |||
| 226 | 77640 | uint8x16_t* vec_coarse = reinterpret_cast<uint8x16_t*>(coarse); | |
| 227 | 77640 | incoming_pixels = vshrq_n<4>(incoming_pixels); | |
| 228 | 77640 | outgoing_pixels = vshrq_n<4>(outgoing_pixels); | |
| 229 | |||
| 230 | 155280 | uint8x16_t delta = | |
| 231 | 77640 | vsubq(vceqzq_u8(outgoing_pixels), vceqzq_u8(incoming_pixels)); | |
| 232 | 77640 | vec_coarse[0] = vaddq(vec_coarse[0], delta); | |
| 233 | |||
| 234 | KLEIDICV_FORCE_LOOP_UNROLL | ||
| 235 |
2/2✓ Branch 0 taken 77640 times.
✓ Branch 1 taken 1164600 times.
|
1242240 | for (int i = 1; i < 16; i++) { |
| 236 | 1164600 | uint8x16_t index = vdupq_n_u8(i); | |
| 237 | 1164600 | delta = | |
| 238 | 1164600 | vsubq(vceqq(outgoing_pixels, index), vceqq(incoming_pixels, index)); | |
| 239 | 1164600 | vec_coarse[i] = vaddq(vec_coarse[i], delta); | |
| 240 | 1164600 | } | |
| 241 | 77640 | } | |
| 242 | |||
| 243 | // To find the median efficiently, we first scan the coarse histogram to | ||
| 244 | // identify the segment (coarse bin) where the median value lies. This helps | ||
| 245 | // narrow down the search range in the fine histogram. Once the correct coarse | ||
| 246 | // bin is located, we scan the corresponding segment in the fine histogram | ||
| 247 | // until the cumulative distribution function (CDF) reaches the target CDF | ||
| 248 | 66304 | uint8_t scalar_find_median(size_t ksize) { | |
| 249 | // The target median index in a sorted window | ||
| 250 | 66304 | const uint8_t target_cdf = (ksize * ksize) / 2; | |
| 251 | |||
| 252 | // Variables for histogram scanning | ||
| 253 | 66304 | uint8_t cumulative_sum = 0; | |
| 254 | 66304 | int fine_index = 0; | |
| 255 | 66304 | int coarse_index = 0; | |
| 256 | |||
| 257 | // Phase 1: Coarse histogram scan to find the correct bin range | ||
| 258 | 564626 | while (true) { | |
| 259 |
2/2✓ Branch 0 taken 498322 times.
✓ Branch 1 taken 66304 times.
|
564626 | if ((cumulative_sum + coarse[coarse_index]) > target_cdf) { |
| 260 | 66304 | fine_index = coarse_index * 16; | |
| 261 | 66304 | break; | |
| 262 | } | ||
| 263 | 498322 | cumulative_sum += coarse[coarse_index]; | |
| 264 | 498322 | coarse_index++; | |
| 265 | } | ||
| 266 | |||
| 267 | // Phase 2: Fine histogram scan to locate the exact median value | ||
| 268 | 575117 | while (true) { | |
| 269 | 575117 | cumulative_sum += fine[fine_index]; | |
| 270 |
2/2✓ Branch 0 taken 66304 times.
✓ Branch 1 taken 508813 times.
|
575117 | if (cumulative_sum > target_cdf) { |
| 271 | 66304 | break; | |
| 272 | } | ||
| 273 | 508813 | fine_index++; | |
| 274 | } | ||
| 275 | |||
| 276 | 132608 | return fine_index; | |
| 277 | 66304 | } | |
| 278 | |||
| 279 | 6944 | uint8x16_t vector_find_median(size_t ksize) { | |
| 280 | // Calculate the target median index based on kernel size | ||
| 281 | 6944 | const uint8x16_t target_cdf = vdupq_n_u8((ksize * ksize) / 2); | |
| 282 | |||
| 283 | // Cumulative sum vector used for tracking the running histogram total | ||
| 284 | 6944 | uint8x16_t cumulative_sum = vdupq_n_u8(0); | |
| 285 | |||
| 286 | // Coarse histogram pointer (used to narrow the search) | ||
| 287 | 6944 | uint8x16_t* coarse_histogram = reinterpret_cast<uint8x16_t*>(coarse); | |
| 288 | |||
| 289 | // Coarse pass: Locate the coarse histogram bin range likely containing the | ||
| 290 | // median value This step identifies the starting fine histogram index for | ||
| 291 | // each lane, based on cumulative counts. It does not find the actual median | ||
| 292 | // yet. | ||
| 293 | 6944 | int coarse_index = 0; | |
| 294 | 6944 | int fine_index = 0; | |
| 295 | |||
| 296 | 51757 | while (true) { | |
| 297 | 103514 | uint8x16_t cumulative_sum_next = | |
| 298 | 51757 | vaddq(cumulative_sum, coarse_histogram[coarse_index]); | |
| 299 | 103514 | uint8x16_t coarse_threshold_exceeded = | |
| 300 | 51757 | vcgtq_u8(cumulative_sum_next, target_cdf); | |
| 301 | |||
| 302 |
2/2✓ Branch 0 taken 6944 times.
✓ Branch 1 taken 44813 times.
|
51757 | if (any_lane_set(coarse_threshold_exceeded)) { |
| 303 | 6944 | fine_index = coarse_index * 16; | |
| 304 | 6944 | break; | |
| 305 | } | ||
| 306 | |||
| 307 | 44813 | cumulative_sum = cumulative_sum_next; | |
| 308 | 44813 | coarse_index++; | |
| 309 | 51757 | } | |
| 310 | |||
| 311 | // Fine pass: Scan the fine histogram to find the exact median per lane | ||
| 312 | 6944 | uint8x16_t median_result = vdupq_n_u8(0); | |
| 313 | 6944 | uint8x16_t lane_found_mask = vdupq_n_u8(0); | |
| 314 | 6944 | uint8x16_t* fine_histogram = reinterpret_cast<uint8x16_t*>(fine); | |
| 315 | |||
| 316 | 291999 | while (true) { | |
| 317 | 291999 | cumulative_sum = vaddq(cumulative_sum, fine_histogram[fine_index]); | |
| 318 | |||
| 319 | 291999 | uint8x16_t still_searching_mask = vceqzq_u8(lane_found_mask); | |
| 320 | 291999 | median_result = | |
| 321 | 291999 | vbslq_u8(still_searching_mask, vdupq_n_u8(fine_index), median_result); | |
| 322 | 291999 | lane_found_mask = | |
| 323 | 291999 | vorrq_u8(lane_found_mask, vcgtq_u8(cumulative_sum, target_cdf)); | |
| 324 | |||
| 325 |
2/2✓ Branch 0 taken 6944 times.
✓ Branch 1 taken 285055 times.
|
291999 | if (all_lane_set(lane_found_mask)) { |
| 326 | 6944 | break; | |
| 327 | } | ||
| 328 | 285055 | fine_index++; | |
| 329 | 291999 | } | |
| 330 | |||
| 331 | 13888 | return median_result; | |
| 332 | 6944 | } | |
| 333 | |||
| 334 | 291999 | bool all_lane_set(uint8x16_t& v_u8) { | |
| 335 | 291999 | uint32x4_t v_u32 = vreinterpretq_u32_u8(v_u8); | |
| 336 | 583998 | return vminvq_u32(v_u32) == 0xffffffff; | |
| 337 | 291999 | } | |
| 338 | |||
| 339 | 51757 | bool any_lane_set(uint8x16_t v_u8) { | |
| 340 | 51757 | uint32x4_t v_u32 = vreinterpretq_u32_u8(v_u8); | |
| 341 | 103514 | return vmaxvq_u32(v_u32) != 0; | |
| 342 | 51757 | } | |
| 343 | }; | ||
| 344 | |||
| 345 | 100 | KLEIDICV_TARGET_FN_ATTRS kleidicv_error_t median_blur_small_hist_stripe_u8( | |
| 346 | const uint8_t* src, size_t src_stride, uint8_t* dst, size_t dst_stride, | ||
| 347 | size_t width, size_t height, size_t y_begin, size_t y_end, size_t channels, | ||
| 348 | size_t kernel_width, size_t kernel_height, FixedBorderType border_type) { | ||
| 349 | 100 | Rectangle image_dimensions{width, height}; | |
| 350 | 100 | Rows<const uint8_t> src_rows{src, src_stride, channels}; | |
| 351 | 100 | Rows<uint8_t> dst_rows{dst, dst_stride, channels}; | |
| 352 | 100 | MedianBlurSmallHist median_filter; | |
| 353 | 100 | const size_t kMargin = kernel_width / 2; | |
| 354 | |||
| 355 | // Process left border | ||
| 356 | 100 | size_t starting_width = 0; | |
| 357 | 100 | const size_t processing_left_width = kMargin; | |
| 358 | 100 | Point starting_left_coordinates{starting_width, y_begin}; | |
| 359 | 100 | Point ending_left_coordinates{starting_width + processing_left_width, y_end}; | |
| 360 | |||
| 361 | 100 | median_filter.process_pixels_with_horizontal_borders( | |
| 362 | 100 | image_dimensions, starting_left_coordinates, ending_left_coordinates, | |
| 363 | 100 | src_rows, dst_rows, kernel_height, border_type); | |
| 364 | |||
| 365 | // Process center region | ||
| 366 | 100 | starting_width = processing_left_width; | |
| 367 | // Compute the width of the center region that can be processed with NEON | ||
| 368 | // instructions. Subtract 2 * kMargin to exclude left and right borders, which | ||
| 369 | // are handled separately using scalar code due to varying border modes (e.g., | ||
| 370 | // REPLICATE, REFLECT, WRAP, REVERSE). Align the remaining width down to the | ||
| 371 | // nearest multiple of 16 to match NEON's 128-bit register width (16 bytes for | ||
| 372 | // uint8x16_t). | ||
| 373 | 100 | const size_t processing_center_width = ((width - 2 * kMargin) / 16) * 16; | |
| 374 | 100 | Point starting_center_coordinates{starting_width * channels, y_begin}; | |
| 375 | 200 | Point ending_center_coordinates{ | |
| 376 | 100 | (processing_center_width + starting_width) * channels, y_end}; | |
| 377 | |||
| 378 | 100 | median_filter.process_pixels_without_horizontal_borders( | |
| 379 | 100 | image_dimensions, starting_center_coordinates, ending_center_coordinates, | |
| 380 | 100 | src_rows, dst_rows, kernel_height, border_type); | |
| 381 | |||
| 382 | // Process right border | ||
| 383 | 100 | starting_width = processing_left_width + processing_center_width; | |
| 384 | 200 | const size_t processing_right_width = | |
| 385 | 100 | width - processing_left_width - processing_center_width; | |
| 386 | 100 | Point starting_right_coordinates{starting_width, y_begin}; | |
| 387 | 200 | Point ending_right_coordinates{starting_width + processing_right_width, | |
| 388 | 100 | y_end}; | |
| 389 | |||
| 390 | 100 | median_filter.process_pixels_with_horizontal_borders( | |
| 391 | 100 | image_dimensions, starting_right_coordinates, ending_right_coordinates, | |
| 392 | 100 | src_rows, dst_rows, kernel_height, border_type); | |
| 393 | |||
| 394 | 100 | return KLEIDICV_OK; | |
| 395 | 100 | } | |
| 396 | } // namespace kleidicv::neon | ||
| 397 |